Surface Oxidation of Metal Oxide Nanostructures for Improved Electrochemical Water Oxidation and Enhanced Exchange Anisotropy

Bharati Debnath, Ashwani Kumar and Sayan Bhattacharyya*
Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian
Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India

*Email: sayanb@iiserkol.ac.in
It is well known that the magnetic and electrochemical properties of nanomaterials are dependent on the crystallinity, particle size and morphology of the nanostructures. ${ }^{1,2} \mathrm{~A}$ one pot synthetic methodology was established to obtain spherical $\mathrm{Mn}_{3} \mathrm{O}_{4}$ nanoparticles selfassembled into two-dimensional flakes and three-dimensional cubic morphologies. The surfactant concentration in the $\mathrm{Mn}_{3} \mathrm{O}_{4}$ nanostructures controls the extent of surface oxidation to give $\mathrm{Mn}_{3} \mathrm{O}_{4} @ \mathrm{Mn}_{2} \mathrm{O}_{3}$ phases. The presence of different amount of $\mathrm{e}_{\mathrm{g}}{ }^{1}$ electron in these nanostructures influences the electrochemical oxygen evolution reaction (OER) activity. The presence of $\mathrm{e}_{\mathrm{g}}{ }^{1}$ electron gives rise to Jahn-Teller distorted structure facilitating high structural flexibility of the catalyst and provides the optimum strength of interaction between the catalyst and O_{2} which is required for water oxidation. ${ }^{3}$ In addition, the traditional magnetic ordering of $\mathrm{Mn}_{3} \mathrm{O}_{4}$ being ferrimagnetic, the oxidized antiferromagnetic shell of $\mathrm{Mn}_{2} \mathrm{O}_{3}$ exerts an exchange coupling at the interface, incorporating high magnetic anisotropy in the nanostructures. The superior performance of the $\mathrm{Mn}_{3} \mathrm{O}_{4} @ \mathrm{Mn}_{2} \mathrm{O}_{3}$ self-assembled nanocubes will be discussed.

References:

1. Debnath, B.; Bansal, A.; Salunke, H. G.; Sadhu, A.; Bhattacharyya, S. J. Phys. Chem. C 2016, 120, 5523-5533.
2. Datta, A.; Kapri, S.; Bhattacharyya, S. J. Mater. Chem. A 2016, 4, 14614-14624.
3. Maitra, U.; Naidu, B. S.;Govindaraj, A.; Rao, C. N. R. Proc. Natl. Acad. Sci. USA 2013, 110, 11704-11707.
