Smart Materials: Methods and Applications – 2017 (SMMA-2017) PP07

Surface Oxidation of Metal Oxide Nanostructures for Improved Electrochemical Water Oxidation and Enhanced Exchange Anisotropy

Bharati Debnath, Ashwani Kumar and Sayan Bhattacharyya*

Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India

*Email: sayanb@iiserkol.ac.in

It is well known that the magnetic and electrochemical properties of nanomaterials are dependent on the crystallinity, particle size and morphology of the nanostructures.^{1,2} A one pot synthetic methodology was established to obtain spherical Mn_3O_4 nanoparticles self-assembled into two-dimensional flakes and three-dimensional cubic morphologies. The surfactant concentration in the Mn_3O_4 nanostructures controls the extent of surface oxidation to give $Mn_3O_4@Mn_2O_3$ phases. The presence of different amount of e_g^1 electron in these nanostructures the electrochemical oxygen evolution reaction (OER) activity. The presence of e_g^1 electron gives rise to Jahn-Teller distorted structure facilitating high structural flexibility of the catalyst and provides the optimum strength of interaction between the catalyst and O_2 which is required for water oxidation.³ In addition, the traditional magnetic ordering of Mn_3O_4 being ferrimagnetic, the oxidized antiferromagnetic shell of Mn_2O_3 exerts an exchange coupling at the interface, incorporating high magnetic anisotropy in the nanostructures. The superior performance of the $Mn_3O_4@Mn_2O_3$ self-assembled nanocubes will be discussed.

References:

1. Debnath, B.; Bansal, A.; Salunke, H. G.; Sadhu, A.; Bhattacharyya, S. J. Phys. Chem. C 2016, 120, 5523-5533.

2. Datta, A.; Kapri, S.; Bhattacharyya, S. J. Mater. Chem. A 2016, 4, 14614-14624.

3. Maitra, U.; Naidu, B. S.;Govindaraj, A.; Rao, C. N. R. Proc. Natl. Acad. Sci. USA 2013, 110, 11704–11707.